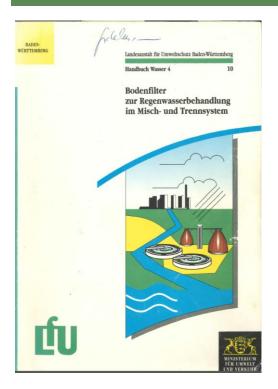


Erfahrungen aus Planung, Bau und Betrieb von Retentionsbodenfilteranlagen

Dr. Dieter Grotehusmann

Ingenieurgesellschaft für Stadthydrologie mbH, Hannover, Berlin

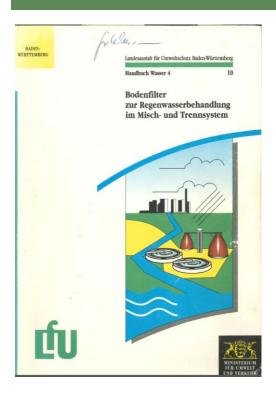
Inhalt


- 1. Regelwerke, Definition RBF
- 2. Planung, Grundlagen
- 3. Vorstufe
- 4. Bemessung
- 5. Filtermaterial, Schilf
- 6. Konstruktion und Bau
- 7. Betrieb
- 8. Zusammenfassung

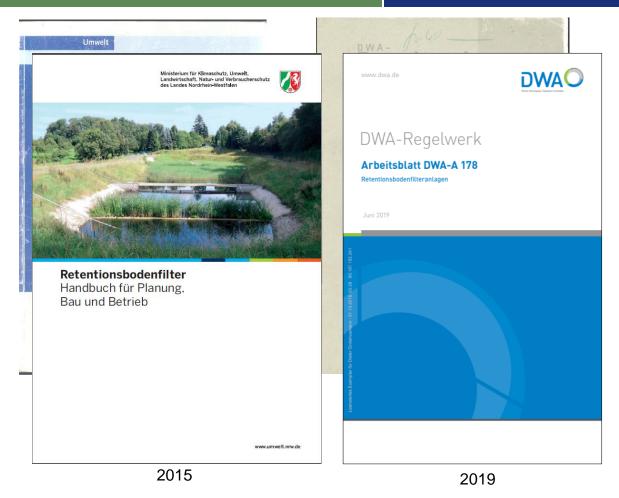


Regelwerke, Definition RBF

"Regelwerke", Definition RBF



1998 2003 2005


"Regelwerke", Definition RBF

1998

Retentionsbodenfilter sind nicht neu !!

"Regelwerke", Definition RBF

DWA-A 178

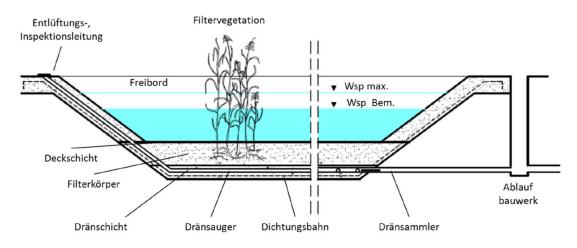
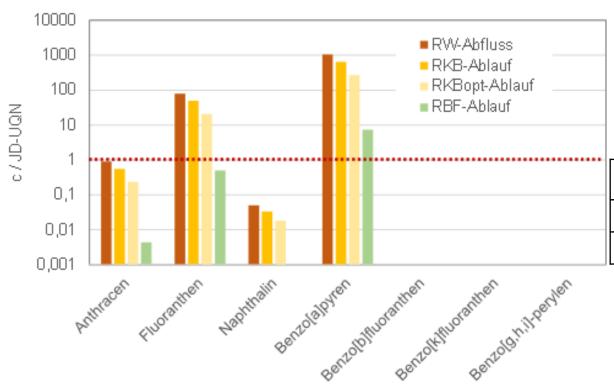


Bild 4: Schematischer Querschnitt durch ein Retentionsbodenfilterbecken

- Einleitung Niederschlagsabfluss in Retentionsraum
- Vertikale Durchsickerung einer Filterschicht
- Filteroberfläche mit Schilf bewachsen
- Sammlung Sickerwasser in Dränsystem
- gedrosselte Ableitung Richtung Gewässer
- Gegen den Untergrund gedichtet

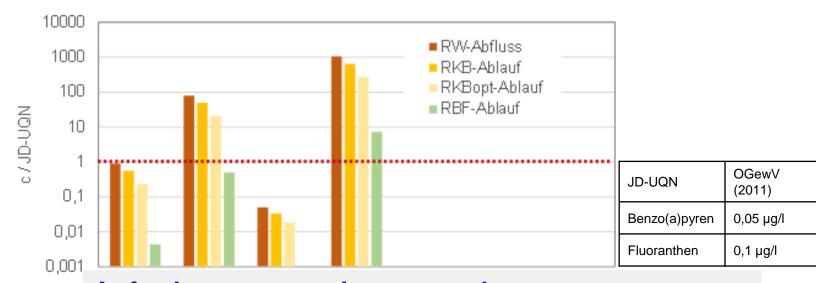
Gewässerschutzziele mit RBF erreichbar?

Tabelle 3.1 Zielgrößen der Niederschlagswasserbehandlung


Defizit im Gewässer	Entlastungshäufigkeit	notwendige Reduzierung der Einleitungsfracht und/oder -konzentration	
hydraulischer Stress	0,5 – 2 1)	nicht maßgebend	
O ₂ -Defizit	0,5 – 2 1)	örtliche Festlegung	
NH ₃ -Toxizität	0,5 – 2 1)	örtliche Festlegung	
Phosphor, Stickstoff	nicht maßgebend	örtliche Festlegung UQN	der OGewV,
AFS _{fein} , Schwermetalle	nicht maßgebend	örtliche Festlegung immis	immissionsbezoge
Hygiene (Keime)	örtliche Festlegung	örtliche Festlegung	

¹⁾ Abhängig vom Wiederbesiedlungspotential - siehe Merkblatt BWK M3 (2001)

MKULNV, (2015)


WRRL bzw. OGewV haben hohe Immissionsanforderungen

JD-UQN	OGewV (2011)	OGewV (2016)
Benzo(a)pyren	0,05 μg/l	0,00017 µg/l
Fluoranthen	0,1 μg/l	0,0063 µg/l

WRRL bzw. OGewV haben hohe Immissionsanforderungen

Anforderungen an den guten chem.
Gewässerzustand (JD-UQN nach Anlage 8 OGewV)
erfordern häufig Retentionsbodenfilteranlagen für
Straßenabflüsse

OGew\/

(2016)

 $0.00017 \, \mu g/l$

 $0.0063 \, \mu g/l$

Erlauben örtliche Randbedingungen sicheren Betrieb?

- Vermeidung Über- und Unterlast
- Überlast:
 Fremdwasser, zu lange Einstaudauern, sehr hohe (mineralische)
 Feststoffeinträge
- Unterlast
 zu seltene Bodenfilterbeschickungen (< 10 1/a), feststofffreier
 Niederschlagszufluss

Ggf. stufenweisen Ausbau RBF vorsehen

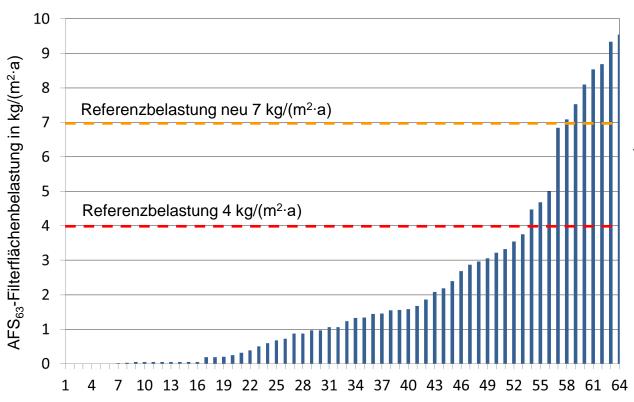
Vorstufe vor Bodenfiltern

Vorstufe Trennsystem, Straße

- Nur Grobstoffrückhalt z.B. unbelüfteter Sandfang, Geschiebeschacht (DWA-M 176)
- Sammelvolumen (Speicherraum) für Grobstoffe > 0,5 m³/ha A_{E,b,a}
- Grobstoffrückhalt kann in Zulaufbereich RBF integriert sein
- Bestehende RKB können genutzt werden (Betrieb grundsätzlich ohne Dauerstau)
- Keine großen RiStWag-Anlagen als Vorstufe nötig!

Vorstufe Trennsystem, Straße

Keine großen RiStWag-Anlagen als Vorstufe nötig!



Bemessung

Bemessung Retentionsbodenfilterbecken

- Bemessungsparameter ist AFS₆₃
- Filterflächenbelastung 4 kg(m²⋅a) ≤ b_{krit} ≤ 7 kg(m²⋅a)

Erfahrungshintergrund:

Beprobungen der Sedimentschicht an vielen RBF in NRW und BW

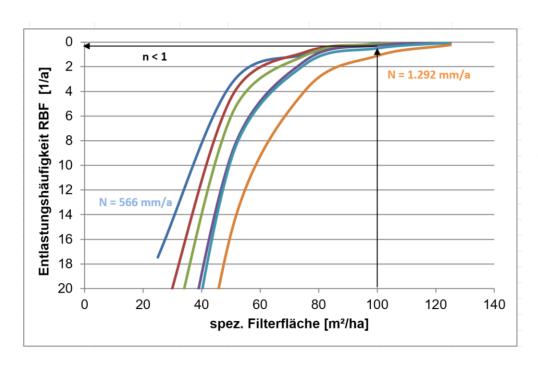
Bemessung, Nachweis

- Zunächst (Vor)Bemessung
 A_F, Q_{Dr,RBF}, h_{RR}, V_{RBF}
- N-A-Kontinuumssimulation mit > 10 a N-Belastung
- Prüfung der Einhaltung des Behandlungsziels
- Prüfung der zul. Filterflächenbelastung
 Prüfung der Einstaudauer und Beschickungshäufigkeit
- Ggf. Iteration mit veränderten Eingangsdaten (Filterfläche, nutzbare Einstauhöhe, Vorentlastung...)

Bemessung Retentionsfilterbecken, Straße

Vereinfachte Bemessung RBF für Straßenabflüsse <u>ohne</u> Nachweis möglich:

- $A_F = 100 \text{ m}^2/\text{ha } A_{E,b,a}$
- Nutzbare Einstauhöhe h_{RR} ≥ 0,5 m


Hintergrund:

$$b_{R,a}$$
 = 760 kg/(ha · a) Kat III nach DWA-A 102 $\eta_{B,F} > 0.95$ $b_{krit} \le 7$ kg(m²·a)

Sensitivitäten Bemessung

N-A- Simulationen mit unterschiedlichen Regenreihen N = 566 - 1.292 mm/a

mit $A_F = 100 \text{ m}^2/\text{ha}$ i.d.R.

Anzahl Überläufe n < 1 Behandelte Wassermenge > 98 %

Filtermaterial, Schilf

Filtermaterial

Tabelle 4.1 Grundanforderungen an Filtersubstrate für Bodenfilter

Eigenschaft	Begründung
Verwendung von Sand 0/2 nach TL Gestein – StB 04 $3 < U = d_{60}/d_{10} < 5$	hohe strömungsmechanische Stabilität, hohe Wasserdurchlässigkeit, gleichmäßige Durchströmung
Begrenzung Feinkornanteil T + U < 1%	Vermeidung von substratbürtigen Partikelaustrag, hohe Wasserdurchlässigkeit
Begrenzung Kiesanteil G < 5 %	Feinpartikelfiltration ermöglichen, hohe aktive Kornoberfläche und Pufferfähigkeit gegenüber Belastungsschwankungen
Carbonatgehalt > 20 %	Abpufferung der bei Nitrifikation entstehender pH-Wert Senkung, Vermeidung der Verlagerung von Schwermetallen
Begrenzung der organischen Substanz < 1 %	Verhinderung der Mineralisierung von organischer Substanz im Substrat, Vermeidung von Aggregatbildungen
Schadstofffreiheit	Vermeidung von substratbürtigen Schadstoffeintrag in die Gewässer

MKULNV, (2015)

Kolmationsschutz, Schilf

Kolmationsschutz (Schutz vor Verschlämmung der Filteroberfläche)

Kein Fremdwasser!

Decklage auf Filterschicht aus ca. 5 cm Karbonatsplitt 2/5 mm

- Schutz vor Kolmation vor vollständiger Schilfetablierung
- Zusätzliche Carbonatversorgung Filtermaterial
- Gewisser Schutz vor wühlenden Tieren

Schilbewuchs

- Guter Kolmationsschutz nach Etablierung
- Lamellensedimentationseffekt durch Schilf
- Verdrängung Fremdvegetation

Schilfetablierung

16.10.2015¤

Gute Schilfetablierung:

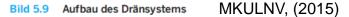
- Wasserstand knapp unter FOK
- Startdüngung NPK
- Inbetriebnahme nach einer Vegetationsperiode

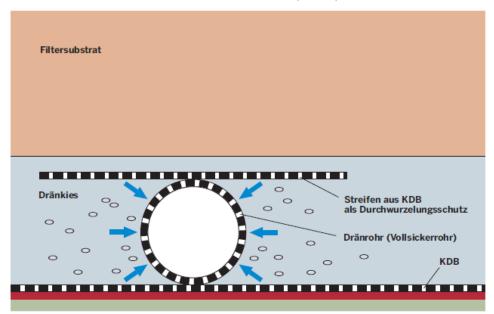
schlechte Schilfetablierung:

- Wasserstand über FOK + heißerSommer = Algenbildung
- GALA-Unternehmen
 (Fertigstellungspflege) hält zu lange an
 Überstau FOK fest

Konstruktion und Bau

Konstruktion und Bau, Zulauf, Ablauf




Ablaufbauwerk mit einfachen Drosseln und Überlauf

Konstruktion und Bau, Dränsystem

Folienstreifen über den Dränrohren vermeiden Wurzeleinwuchs besser als Teilsickerrohre

Betrieb

Inbetriebnahme

Inbetriebnahme Bodenfilter

Die meisten Probleme entstehen bis zum ersten Betriebsjahr

- Kolmationsgefahr durch Fremdwasser
- Kolmation durch Eintrag Feinstoffe von unbefestigten Flächen
- Nicht ausreichende Schilfetablierung
- Makroporen durch Tierbauten

Daher:

- Fertigstellungspflege Schilf
- In jedem Fall Funktionsprüfung (z.B. Schieber, Dammbalken, maschinentechnische Ausrüstung) und
- Besonders betreuter Probebetrieb (oder Einfahrbetrieb) über möglichst 1 Jahr mit Auswertung der Messungen (vgl. DAW A- 166)

Betrieb

Pflege der Filterfläche:

- Schilfbestand nicht m\u00e4hen
- Fremdbewuchs (insbes. Gehölze)
 regelmäßig im April entfernen
- Auf Tierbauten achten (Makroporen!)

Zusammenfassung

- Retentionsbodenfilteranlagen seit > 30 Jahre bewährt
- höhere Reinigungsleistung als Sedimentationsanlagen (häufig notwendig bezogen auf prioritäre Stoffe)
- Auf Überlast (vor allem Fremdwasser) aber auch auf Unterlast achten
- Filterfläche 100m²/ha Straßenfläche
- Betrieb: Schilf nicht m\u00e4hen, auflaufende Geh\u00f6lze entfernen, Vorstufe r\u00e4umen