

(Asphalt-) Deckschichten für spezielle Anforderungen / Beanspruchungen

Dr.-Ing. Viktor Root

ZuB Ingenieurgesellschaft für Zuschlag- und Baustofftechnologie mbH

Prüfstelle für Erd- und Straßenbau

Eppertshausen

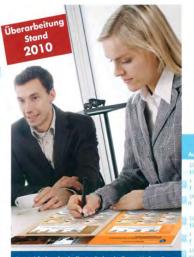
VSVI - Hessen

13. Januar 2016 in Friedberg

Agenda

- Anlass / Motivation
- Konzepte und Möglichkeiten von Asphaltdeckschichten mit speziellen Anforderungen
- Bautechnische und asphalttechnologische Hinweise zur Herstellung und zum Einbau von solchen Deckschichten anhand von Praxisbeispielen
- Resümee

ASPHALT in seiner FUNKTION und GESTALTUNG


Quelle: asphaltberatung

Ein zielgerechter Einsatz von Asphaltdeckschichtbelägen ermöglicht bei Verkehrsflächenbefestigungen:

- Erhöhte Nutzungsdauer
- Geringe Erhaltungskosten
- Aufrechterhaltung der Verkehrssicherheit und des Nutzungskomforts
- Weniger Baustellen und damit Baustellenverkehr / Zufriedenheit bei Nutzern und Anwohnern

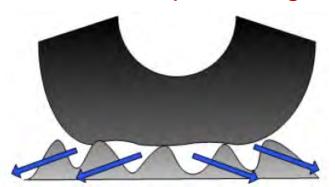
Der Qualität der Planung und der Ausführung von den Asphaltbauweisen ist stets eine besondere Aufmerksamkeit zu widmen!

Der Leitfaden durch die Asphalttechnik zur Vorbereitung und Ausschreibung von Asphaltarbeiten

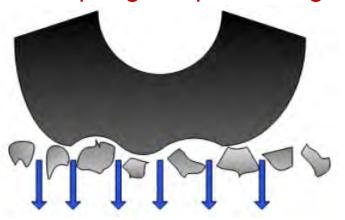
Möglichkeiten der Lärmminderung auch mit **Asphaltbelägen**

BAB A3 – Einhausung bei Hösbach

Homburger Landstr., Ffm – LOA 5 D



BAB A3 – Lärmschutzwände bei Aschaffenburg


Wirkkonzepte für Lärmminderung in der Reifenaufstandsfläche

Dichte Asphaltbeläge

Wirkung über die Oberflächentextur, eingeschlossene Luft entweicht horizontal über die Texturtiefen (Plateau mit Tälern/Schluchten)

Offenporige Asphaltbeläge

Wirkung über die Porigkeit der Schicht, eingeschlossene Luft entweicht vertikal über die untereinander zugänglichen Hohlräume in der Schicht

Möglichkeiten der Lärmminderung mit Asphalt

Asphaltdeckschichten mit Potenzial zur Lärmminderung, Regelbauweisen gemäß ZTV Asphalt-StB und nach RLS 90:

 D_{StrO} Korrekturwerte gelten für Außerortsstraßen mit Höchstgeschwindigkeiten > 60 km/h

AC ≤ 11	SMA 8 o. 11	MA 5 o. 8	PA 8	PA 11
ohne Ab(splittung)	ohne Ab(splittung)	mit Abstreuung		
- 2 dB(A)	- 2 dB(A)	- 2 dB(A)	- 5 dB(A)	- 4 dB(A)


(Referenzwert $D_{StrO} = 0$: Fahrbahnoberfläche aus nichtgeriffeltem Gussasphalt)

Weitere Asphaltdeckschichtarten mit Potenzial zur Lärmminderung ohne D_{StrO}-Wert, spezielle Bauweisen in Anlehnung an ZTV Asphalt-StB:

Möglichkeiten der Lärmminderung mit Asphalt

Spezielle Bauweisen, die noch nicht in den ZTV Asphalt-StB enthalten sind:

Kriterien für die Auswahl von lärmmindernden Asphaltdeckschichtbelägen

- Pegelminderung ist das primäre Ziel
- Bau- und verkehrstechnische Randbedingungen
 - Lage innerorts / außerorts, angebauter / nicht angebauter Straßenabschnitt
 - Zulässige Geschwindigkeit (30 km/h, 50 km/h, 120 km/h...)
 - Verkehrsstärke, Lkw-Anteil und Schwerverkehrsanteil
 - Anzahl und Lage von Einmündungen und Lichtsignalanlagen, Kurvenradien im Streckenverlauf, Abbiegeverkehr (Lkw, Pkw), Busverkehrsbelastung und Bushaltestellen
 - Einbauten in der Fahrbahnfläche, Entwässerung (Abläufe)
 - Umfang der geplanten Maßnahme (grundhafte Erneuerung vs. Fahrbahndeckenerneuerung)
- Wirtschaftlichkeit
 - Kosten, Nutzen, Dauerhaftigkeit

Reaktion der FGSV auf den Bedarf von speziellen Asphaltbauweisen

FGSV Arbeitskreis 7.3.3 - Innovationen

Erarbeitung von

Empfehlungen für lärmmindernde

Asphaltdeckschichten E LA D (LOA D und SMA LA)

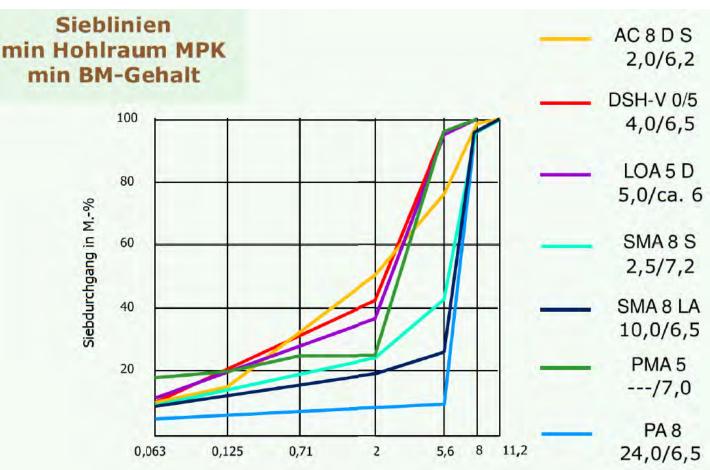
und

Hinweise für Alternative Asphaltbinderschicht konzepte H Al ABi (SMA B S und AC B S SG)


Empfehlungen und Hinweise basieren u.a. auf den Ergebnissen

- Sammlung und Auswertung von Daten über Baumaßnahmen
- Untersuchungen zur Asphaltmischgutkonzeption
- □ Schalltechnische Untersuchungen und Untersuchungen zur Abschätzung der "Lebensdauer"

anung und Ausführung der nindernden Asphaltdeckschichten O und SMA LA


Empfehlungen E LA D – Stand der Technik

- Begriffsbestimmungen
- Wirkungsweise
- Planung von Baumaßnahmen
- ZweckmäßigeAsphaltarten und -sorten
- Baugrundsätze

- Baustoffe und
 Baustoffgemische
- Asphaltmischgutherstellung
- Bauausführung
- rüfungen / Qualitätssicherung
- Betriebliche Erhaltung

Kornzusammensetzung – wichtige Grundlage für geeignetes Asphaltmischgutkonzept

4

Empfehlungen für lärmmindernde Asphaltdeckschichten AC D LOA und SMA LA – E LA D

- ☐ Unebenheiten der Unterlage innerhalb einer 4 m langen Messstrecke max. 4 mm (Zielwert 3 mm)
- ☐ Einsatz eines Beschickers jedoch erst bei größeren Baulosen
- Fertigerbohle ist so einzustellen, dass die Gleichmäßigkeit der Oberflächentextur über die gesamte Einbaubreite gegeben ist (Vorwärmen, Anstellwinkel, Vorverdichtung)
- Walzverdichtung sollte nahe an dem Straßenfertiger beginnen, da dünne Deckschichten schneller auskühlen
- Verdichtung mit Glattmantelwalzen, Gesamtgewicht 8 t bis 16 t (Linienlast beachten)
- ☐ Verdichtung sollte bei Temperatur in der Asphaltschicht von 100 °C abgeschlossen sein
- ☐ Standzeiten beim Einbau vermeiden, Andocken von LKW beachten
- ☐ Möglichst optimale Walzenlogistik einstellen, möglichst optimales Einbaumanagement (Temperatur/Verdichtung)
- Empfohlen wird Probemischung an der Mischanlage und Ausführung eines Probefeldes im Baustellenbereich

Empfehlungen für lärmmindernde Asphaltdeckschichten AC D LOA und SMA LA – E LA D

Anforderungen an die fertige Asphaltdeckschicht LOA 5 D

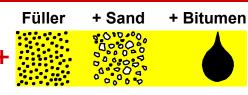
Empfehlungen für lärmmindernde Asphaltdeckschichten AC D LOA und SMA LA - E LA D

Anforderungen an die fertige Asphaltdeckschicht SMA LA

Schichteigenschaften für di Asphaltmischgutsorte	SMA 8 LA	SMA 5 LA	
Einbaudicke	cm	2,5 bis 4,0	2,0 bis 3,0
Verdichtungsgrad	Vol%	> 97,0	> 97,0
Hohlraumgehalt	Vol%	9,0 bis 14,0	9,0 bis 14,0
Ebenheit (4 m - Messstrecke)	mm /	≤ 3	≤ 3

semidichte bis drainierende Bauweise, somit ist eine Sättigung der Schicht mit Oberflächenwasser möglich

> erhöhte Anforderung an die Fbenheit


dünn-schichtige Asphaltbauweise

Erstellung von Asphaltkonzepten unter Beachtung M KEP (FGSV) für Asphaltmischgut AC 5 D LOA

Erfahrungskonzepte AC 5 D LOA						
		EP	KP	Ergebnisse		
Erst- Konzept	Füller (KS) M%:	11,2	9,8	Probefeld		
	fGk (Mor) M%:	24,3	25,5	$V_{MPK} = 9.0 \text{ Vol}\%$		
	gGk (Dia) M%:	64,5	64,7	$V_{BK} = 12,9 \text{ Vol}\%$		
	50/70 mit Lucobit	5,7	5,8	k _{BK} = 95,8 %		
Opt Konzept	Füller (KS) M%:	12,9	13,0	Ergebnisse Baumaßnahme		
	fGk (Mor) M%:	21,2	19,4	$V_{MPK} = 6.9 \text{ Vol}\%$		
	gGk (Dia) M%:	65,9	67,6	$V_{BK} = 6.7 \text{ Vol}\%$		
	50/70 mit Lucobit	5,7	5,9	$k_{BK} = 100,5 \%$		

- Variation der Kornzusammensetzung
- Variation des
 Bindemittelgehalts mit
 Beachtung des
 Bindemittelvolumens
- Beachtung der Verdichtbarkeit und Prozessicherheit des Asphaltmischgutes
- Beachtung der bleibenden Stabilität der Oberfläche unter Beanspruchung
- Konkave Oberfläche und offene Textur (hoher Gestaltfaktor)

Praxisbeispiel:

- Einbaufläche ca. 6.000 m²
- ☐ Einbaubeginn um 9.00 Uhr, Einbauende ca. 15.00 Uhr
- Einbau von LOA 5 D bei vollständiger Sperrung an einem Tag
- Einbau von AC 5 D LOA mit 2 gestaffelten Fertigern und 5 unterschiedlichen Walzen bei Mischgutanlieferung aus einer Asphaltmischanlage
- ☐ Temperatur der Unterlage beim Einbaubeginn ca. 16 °C
- Oberflächentemperatur des Asphaltmischgutes bei Walzbeginn ca. 150 °C
- Vorbereitungsarbeiten mit umfassendem Beratungs- und Qualitätssicherungskonzept

Praxisbeispiel:

Einbau von LOA 5 D in Frankfurt/M

Menge der anzusprühenden Bitumenemulsion auch im Probefeldbau ermitteln!

 $= 600 \, g/m^2$

Praxisbeispiel:

Praxisbeispiel:

- Gestörte Textur an der Oberfläche von LOA 5 D nach dem Fertiger am Anfang der Einbaubahn
- Unzureichendes Vorheizen der Fertigerbohle zu Beginn des Einbaues und damit ungleichmäßige
 Temperaturverteilung innerhalb der Fertigerbohle

Praxisbeispiel:

- Selbstnivellierende
 Schieberkappen
 fordern erhöhte
 Anzahl von Arbeiter in der Kolonne
- Zugiges Nacharbeiten (Hochziehen) von Schieberkappen direkt nach dem Fertiger unter besonderer Sorgfalt, möglichst ohne der Beeinträchtigung der Oberflächentextur

Praxisbeispiel:

- Erstellung vom Fertigerfahrplan für die komplizierten Einbaubereiche ist eine Grundvoraussetzung für die Minimierung der Handeinbaufläche
- Vorbereitung des Fertigers und der Fertigerbohle für die entsprechende Einbaubereiche

Praxisbeispiel:

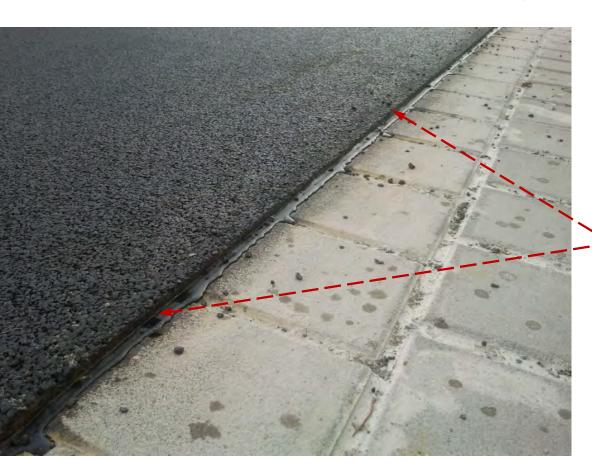
- Freigelassene Fläche in einem Zwickel beim Einbau von LOA 5 D
- ☐ Späterer Einbau von
 Gussasphalt (MA) im
 ausgesparten
 Zwickelbereich
 (Bereich mit erhöhten
 Schubbeanspruchungen an
 der Oberfläche der
 Fahrbahn)

Praxisbeispiel:

Einbau von LOA 5 D in Frankfurt/M

Abstimmung zwischen allen am Bau Beteiligten unter der Berücksichtigung der örtlichen Gegebenheiten und dem Austausch von Fachwissen stellen die Grundlage für das Gelingen einer "speziellen" Bauweise!

Praxisbeispiel:


Nicht mit Scheuklappen voraus!

...zwar die Verdichtung im Blick behalten, jedoch die Gebrauchseigenschaften wie z. B. die Ebenheit nicht aus dem Fokus verlieren!

Praxisbeispiel:

Einbau von LOA 5 D in Frankfurt/M

Hoher Überstand der Asphaltdeckschicht LOA 5 D (8 bis 12 mm) führt oft zu Ausbruch der Deckschicht im Randbereich

Praxisbeispiel:

Einbau von LOA 5 D in Frankfurt/M

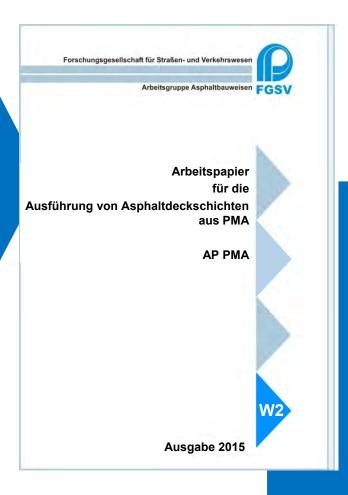
Ausbruch der Deckschicht im Randbereich bei Schubbeanspruchungen an der Oberfläche

Reaktion der FGSV auf den Bedarf von speziellen **Asphaltbauweisen**

FGSV Arbeitskreis 7.3.2 - Gussasphalt

Erarbeitung von

Arbeitspapier für die Ausführung von Asphaltdeckschichten aus PMA – AP PMA

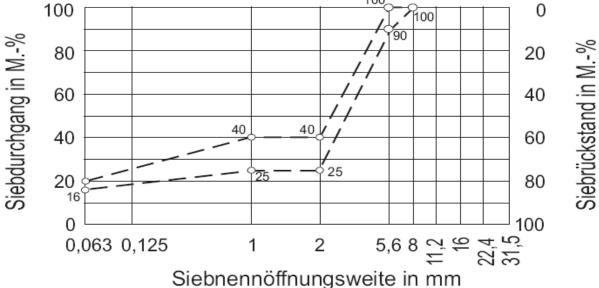

Die Inhalte basieren u.a. auf den Ergebnissen von Forschungsarbeiten und Pilotprojekten

- Sammlung und Auswertung von Daten über Baumaßnahmen
- Untersuchungen zur Asphaltmischgutkonzeption
- Durchführung von Erprobungsmaßnahmen (z. B. Bst. im 21. Jahrhundert BAB A 5 bei Friedberg)

Arbeitspapier AP PMA – ein Wissensdokument

- Wirkungsweise
- Anwendung
- Unterlage
- Baugrundsätze

- Baustoffe und Asphaltmischgutzusammensetzung
- Vorbereitung der
 Gesteinskörnungen und der
 Asphaltmischgutherstellung
- Einbauverfahren und Walzeneinsatz
- Prüfungen / Qualitätssicherung
 - Probefeldbau

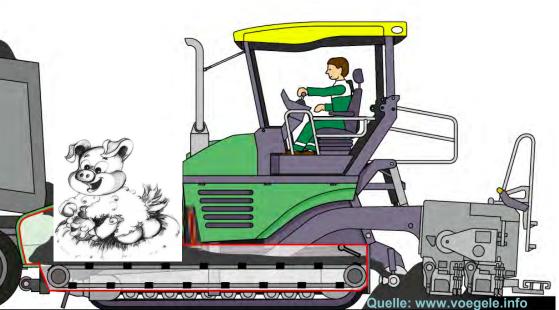

Was ist ein PMA?

Asphaltdeckschichtbauweise aus PMA (Porous Mastic Asphalt) soll die unterschiedlichen Vorteile vom herkömmlichen Gussasphalt (wasserundurchlässig) und von mehreren lärmtechnisch optimierten Walzasphaltarten (offenporige Textur und Hohlraumvolumen) in sich vereinen. Dabei basiert das Prinzip von PMA auf dem des bindemittelreichen Mörtels während des Einbaus Absinken Gesteinskorngerüst mit Ausfallkörnung in den unteren Bereich der Asphaltdeckschicht. Dies führt zur ungleichmäßigen Beschaffenheit der Asphaltdeckschicht (unten – dicht wie ein Gussasphalt, oben – offenporig wie ein lärmmindernder Walzasphalt).

PMA – der Erfolg liegt im Detail!

Unterbrochene Korngrößenverteilung = 100 % Ausfallkörnung im Bereich 1,0 bis 2,0 mm

PMA -


eine Eierlegende Wollmilchsau

oder doch nur eine

Zufallsbauweise???

gelungene Idealvorstellung der **Hohlraumverteilung**

misslungene gleichmäßige **Hohlraumverteilung**

Herstellung von Asphaltdeckschichten für spezielle Beanspruchungen auf einer geeigneten Asphaltunterlage

■ Konventionelle Asphaltbinder sind oftmals hohlraumreicher als die darunterliegende

Asphalttragschicht

□ Erweisen sich oft als wasserführend / drainierend

z.B. lärmtechnisch optimierte Asphaltdeckschicht

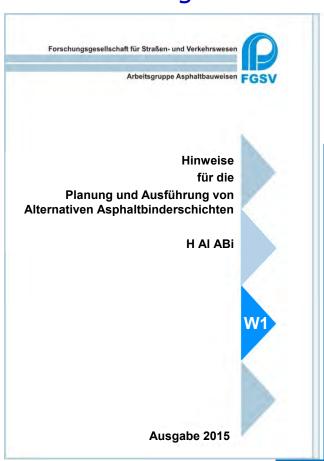
Hohlraumreiche Asphaltbinderschicht

Notwendigkeit der Alternativen Asphaltbinderkonzepte

ZTV Asphalt-StB 07/13

"Eine Asphaltbinderschicht besteht aus Asphaltbinder, das im heißen Zustand eingebaut und verdichtet wird. Die Zusammensetzung ist so abgestimmt, dass damit verformungsbeständige Asphaltbinderschichten hergestellt werden, deren Raumdichte und Korngrößenverteilung sich unter Verkehr nur wenig verändern."

Wichtige Anforderungen / Herausforderungen


Verformungsbeständigkeit, trotz dichtem Konzept

gute Ermüdungsbeständigkeit geringe Wasserempfindlichkeit gutes Tieftemperaturverhalten

Prozesssicherheit / Beherrschbarkeit

ALTERNATIVE ASPHALTBINDERKONZEPTE

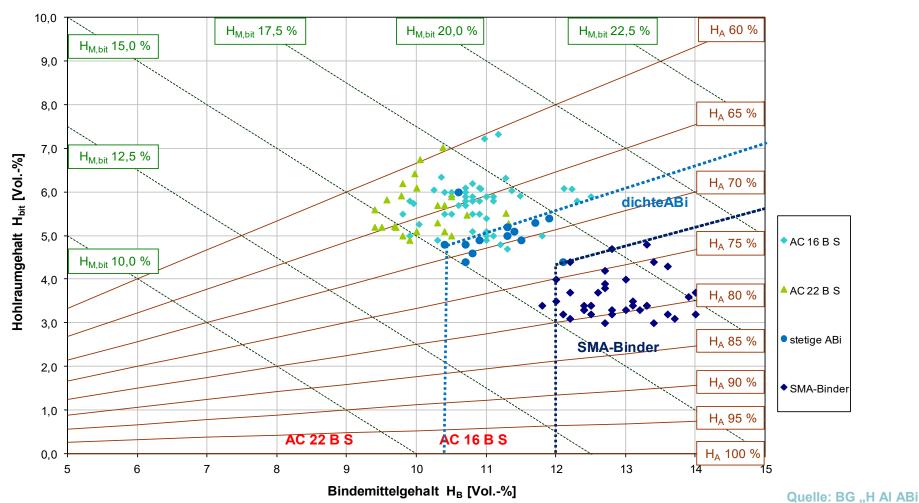
Erarbeitung von W1 - Dokument im AK 7.3.3 "Innovationen"

- Wirkungsweise
- Zweckmäßige Asphaltmischgutarten und -sorten
- Baugrundsätze und **Bauau**sführung
- Baustoffe und Asphaltmischgut-Zusammensetzung
- Prüfungen / Qualitätssicherung

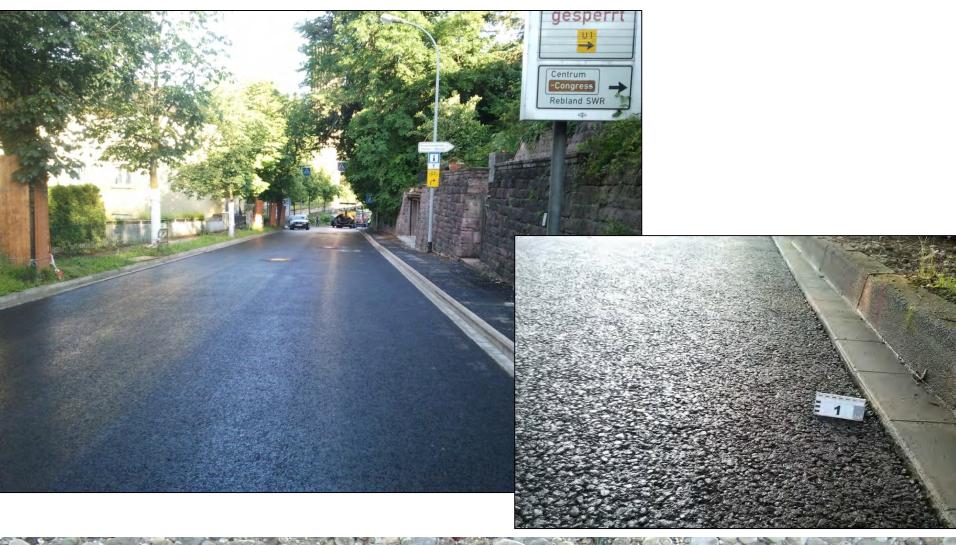
Alternative Asphaltbinderschichtkonzepte

Splittmastix-Asphaltbinder SMA ... B S

Alternativen zu **Asphaltbindern** nach TL Asphalt-StB


stetig gestufter **Asphaltbinder** AC ... B S SG

Eigenschaften, die sich beide Konzepte zuschreiben:


- Hohe Prozesssicherheit beim Einbau
- Verbesserte Ermühdungs-, Alterungs- und Verformungsbeständigkeit
- Temporäre Befahrbarkeit (zwischenzeitliche Freigabe für den Verkehr)
- Anwendbarkeit in den Belastungsklassen 100 bis 3,2
- Geeignet als Unterlage für Asphaltdeckschichten mit besonderen / speziellen Eigenschaften
- Hochviskoses polymermodifiziertes Bitumen (i.d.R. 10/40-65 A)

Vergleich zwischen den Asphaltbindern nach TL Asphalt-StB und Alternativen Asphaltbinderkonzepten



Anwendungsbeispiel von Asphaltbinder SMA 16 B S

Weitere Asphaltdeckschicht für spezielle Beanspruchung

Durch die Kurvenfahrt z. B. im Kreisverkehr treten in den Rollspuren Schubkräfte in radialer Richtung meist zur Außenseite des Kreisverkehrs auf. Diese werden durch kleine Radien und hohe Geschwindigkeiten verstärkt!

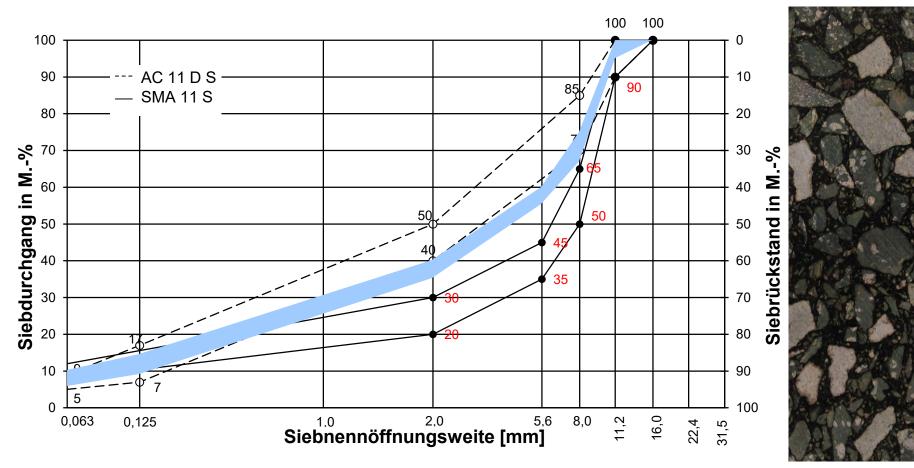
- □ Bei sehr kleinen Radien, wie beispielsweise bei Minikreisverkehren, können durch größere Fahrzeuge auch Torsionsbeanspruchungen, d.h. Radieren der Reifen auf der Stelle, auftreten.
- ☐ Durch eine eventuelle zusätzliche Querneigung des Kreisverkehrs und einem hohen SV-Anteil werden diese Effekte deutlich verstärkt.

Analyse von Fahrverhalten

Lage der Rollpuren LKW

- Durchfahrt abhängig von Kreisgeometrie, Fahrzeug und Fahrweg
- Oft liegt die größte Beanspruchung im konstruktiv schwächsten Bereich

Asphaltdeckschicht aus splittreichem Asphaltbeton


ausgewählte Gebrauchseigenschaften von Asphaltbeton Splittreicher Asphaltbeton AC D SP

ausgewählte
Gebrauchseigenschaften
von Splittmastixasphalt

für den Einsatz in Verkehrsflächen mit speziellen Beanspruchungen:

- Stetige Korngrößenverteilung mit erhöhtem Anteil von Gesteinskörnungen größer 2 mm
- Der hohe Mörtelanteil sichert eine gute Einbettung der Gesteinskörner in der Asphaltmatrix
- □ Die gewählte Kornzusammensetzung führt zur intensiven Verzahnung des Korngerüstes und begünstigt somit eine hohe Schubfestigkeit des Asphaltgefüges
- Hohe Prozesssicherheit beim Einbau und verbesserte Ermühdungs-, Alterungs- und Verformungsbeständigkeit

Optimierung der Kornzusammensetzung AC 11 D SP

Asphaltdeckschicht aus splittreichem Asphaltbeton

Ein hoch bruchflächiges und kantiges Gesteinskorn in einer stetigen Sieblinie mit einem großen Anteil grober Gesteinskörnungen soll in einem hoch viskosen Asphaltmörtel mit hoher Klebekraft umfassend eingebunden werden, um ausreichenden Widerstand des Asphaltes gegen Schubbeanspruchungen an der Fahrbahnoberfläche zu bieten.

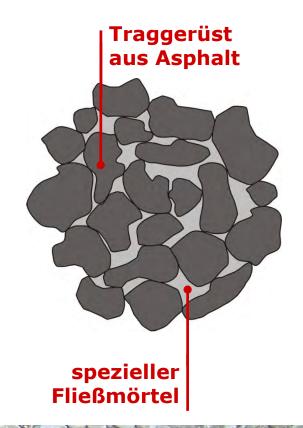
Richtwerte Asphaltdeckschichten aus AC 11 D SP

Baustoffe		AC 11 SP
Gesteinskörnungen (Lieferkörnungen)	-	gGk, fGk, Füller, Bindemittelträger
Anteil gebrochener Kornoberflächen	-	C _{100/0} ; C _{95/1} ; C _{90/1}
Mindestanteil feiner Gesteinskörnungen E _{CS} 35	%	100
Widerstand gegen Zertrümmerung	-	SZ ₁₈ /LA ₂₀
Widerstand gegen Polieren PSV angegeben	-	(51)
Bindemittel, Art und Sorte	-	10/40-65 A oder 25/55-55 A
Zusammensetzung Asphaltmischgut		
Anteil grobe Gesteinskörnung	M%	60 – 65 (Ziel: 65)
Anteil Gesteinskörnung ≤ 0,063 mm	M%	6 - 10
Bindemittelgehalt	M%	B _{min} 6,0
Bindemittelträger	M%	≥ 0,2
Asphaltmischgut		
Hohlraumgehalt MPK	Vol%	2,5 bis 3,5
Verformungsrate im Druck-Schwellversuch	10-4	- 2
nach TP A-StB, Teil 25B mit $\sigma_{\rm o}$ = 0,35 N/mm ²	‰/n	≤ 3
Schicht		
Einbaudicke	cm	3,5 bis 4,5
Hohlraumgehalt am Bohrkern	Vol%	1,5 – 5,0

Arbeitspapier AP A D SP - ein Wissensdokument

FGSV Arbeitskreis 7.3.3 - Innovationen

- Anwendungsbereiche
- Hinweise zur Planung
- Baugrundsätze


- Baustoffe und Asphaltmischgut-Zusammensetzung
- Asphaltmischgutherstellung und Ausführung
- Empfehlungen für die Toleranzen
- Prüfungen / Qualitätssicherung

Weitere (Asphalt)Bauweise für besonders beanspruchte Verkehrsflächen

"Halbstarre Deckschichten" – ein (Wunder)Mittel gegen Verformungen auf mechanisch hochbelastbaren und besonders beanspruchten Verkehrsflächen!

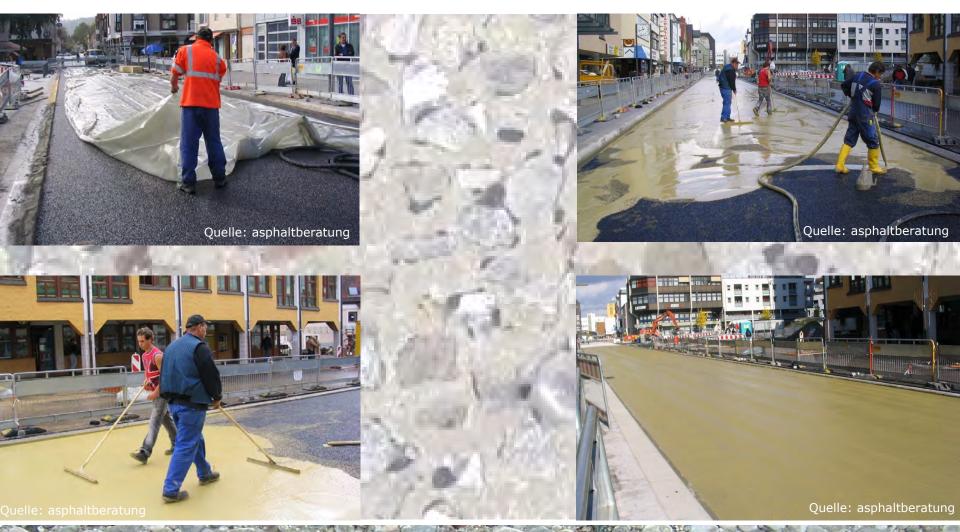
Grundprinzip:

- Halbstarre Deckschichten (HD)
 kombinieren die fugenlose Bauweise von
 Asphalt mit der höheren Steifigkeit
 hydraulischer Baustoffe
- HD bestehen aus einem sehr hohlraumreichen Traggerüst aus Asphalt und einem speziellen Fließmörtel
- Herstellung in zwei Arbeitsgängen, die Einzelkomponenten ergeben erst im Verbund die Halbstarre Deckschicht

Anwendung von Halbstarren Deckschichten (HD)

"Sonderbelag" – nicht in den TL / ZTV Asphalt-StB 07/13 enthalten R 2 – Regelwerk, somit Stand der Technik

Besonders beanspruchte Verkehrsflächen:


- Standflächen für Schwerlastfahrzeuge
- Busverkehrsflächen
- Stauräume vor Signalanlagen
- Industrieflächen
- Lagerhallenböden
- Betankungsanlagen
- Lager-, Abfüll- und Umschlagsflächen für wasser-

gefährdende Stoffe

I.d.R. eine fugenlose Bauweise mit hoher Dichtigkeit und Beständigkeit gegen chemische Stoffe für hohe dynamische und statische Belastungen hierzu die ergänzenden Hinweise des AK 7.3.3 aus 2014 beachten!

Einbau einer Halbstarren Deckschicht (HD) mit angefärbtem Verfüllmörtel

Technisches Regelwerk -

bildet den vertraglichen und technischen Rahmen für die Planung und Ausführung von Verkehrsflächen in Asphaltbauweise.

Hinzukommen müssen:

- Fachwissen
- Sachverstand
- Erfahrung und Sorgfalt

Erst dann führen Baumaßnahmen zum gewünschten Erfolg!!!

> für | hre Aufmerksamkeit und Geduld!